本课程系统构建机器学习所需的概率统计基础,从条件概率、随机变量等核心概念切入,逐步深入多元分布、极限定理与随机过程。重点解析马尔科夫链及其稳态特性,延伸至隐马尔科夫模型的双序列机理,并结合前向算法与维特比解码实践应用。统计推断部分涵盖极大似然估计、贝叶斯推断及近似采样方法,最终通过马尔科夫链-蒙特卡洛(MCMC)实现复杂分布采样。课程融合理论推演与蒙特卡洛模拟,帮助学习者建立统计思维,掌握概率建模与算法优化的核心能力。

资源链接:https://pan.quark.cn/s/5981b531ef3d
- 转载请保留原文链接谢谢!
- 本站所有资源文章出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。
- 本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户擦亮眼睛自行鉴别,做一个有主见和判断力的用户。
- 本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。
- 联系方式(#替换成@):iwantitallPro#proton.me
